不像我们自己的牙齿,小鼠的切牙是连续性生长的。就此而言,这种啮齿类动物就应感谢在它一生当中都持续存在的干细胞。这些干细胞产生丧失干细胞特征的细胞。这些细胞后代接着产生特化细胞---成釉质细胞( enamel-forming ameloblast)和成牙本质细胞(dentin-forming odontoblast)。在生命初期,人类拥有类似地促进牙齿发育的干细胞,但是在童年早期我们的成年牙齿完全形成之后,它们就失活了。
在一项新的研究中,美国加州大学旧金山分校Ophir Klein博士鉴定出产生位于小鼠切牙底部的成体干细胞独特性质的其他分子。相关研究结果发表在PLoS ONE期刊上。
Klein鉴定出的分子是一类称作为microRNAs的分子的独特性成员。在药物开发期间,microRNAs自然地有助于影响细胞命运。如今,研究人员正在探索这些小分子如何可能能够被用来操纵很多类型的细胞群体。这些microRNAs中的一些在不同组织中发挥着类似作用。在Klein与他的同事Andrew Jheon博士和Chunying Li博士发现的众多microRNAs当中,有一个microRNA能够激活牙齿中的干细胞,而且人们之前早已发现它还促进产生毛囊的干细胞激活。
Klein说,激活牙齿中干细胞分裂和自我更新的一些microRNA分子也在肠道中发挥类似作用,因为在肠道中,细胞很快地生长和死亡,位于肠道表面的细胞群体大约每隔5天就更新一次。
牙疼不是病,疼起来真要命!最近由南加州大学牙研究员史松涛(Songtao Shi,音译)率领的多国研究小组,在恢复swine(一种动物)牙功能过程中,成功使牙根(tooth root)、牙周韧带(periodontal ligaments)再生,为千千万万牙病患者带来了福音。研究结果刊登于10月20日《PLoS ONE》。
史松涛与其同事从18-20岁生长的智齿(wisdom teeth)中提取干细胞,并将之培育为牙齿和韧带结构,帮助他们的迷你猪(mini-pig)恢复牙冠。最终得到的牙齿与天然的牙齿在结构和功能上都极为相似。
研究人员采集牙根尖apical papilla(乳头状凸起,生物通编者译)中负责牙根和牙周韧带发育的干细胞。史松涛曾经和美国国立卫生研究院Stan Gronthos合作,利用牙髓中的干细胞进行研究,但他发现新选择的干细胞更加高明:“apical papilla提供的干细胞更有利于牙结构再生。利用这种技术恢复的牙齿的强度虽然与天然牙齿的强度不完全相同,但这已经足够抵挡日常的磨损了。”
本研究人员最近从牙胚中分离出分化能力极强的间充质干细胞,并成功利用这种干细胞使大鼠骨组织和肝脏损伤得以再生和修复。
日本产业技术综合研究所2006年3月7日发表的新闻公报说,该所和大阪大学研究人员用特殊的蛋白质分解酶对牙齿矫正治疗中拔除的智齿牙胚进行了处理,结果分离出具有极强增殖和分化能力的间充质干细胞。他们随后使牙胚间充质干细胞增殖为细胞无性系,并在试管中成功诱导细胞无性系分化为骨细胞、肝细胞和神经细胞。
研究人员把牙胚间充质干细胞植入多孔陶瓷,并移植到患免疫缺陷的大鼠体内。6周后,取出的间充质干细胞和陶瓷复合体被一种特殊的染料染成粉红色,证实了有新生骨组织形成。
研究人员还对肝脏受损的免疫缺陷大鼠进行了实验,这种大鼠不能合成白蛋白。实验结果显示,给这种大鼠移植牙胚间充质干细胞后,它们能重新合成白蛋白。病理检查表明,与未移植间充质干细胞的大鼠相比,移植了间充质干细胞的大鼠肝脏损伤修复程度明显要高。
。据俄《S&TRF》科学网站消息,喀山联邦大学“基因和干细胞技术”开放实验室的研究人员找到一种新方法,利用干细胞的再生能力,在实验室内再生了狗的缺失牙齿。采用的方法为:分离狗大网膜和皮下脂肪处的干细胞,将分离出的干细胞置于由生物相容性钛金属材料构造的多孔小球内,并将此小球置于实验狗缺失牙的牙床处。实验结果显示,干细胞开始生长并分化形成供血组织,经过一段时间后,在实验狗的缺失牙齿部位形成了牙组织。
利用干细胞技术进行牙齿再生的研究由来已久。近日,就有美国哈佛大学的科学家利用弱激光刺激实验老鼠暴露的牙齿结构及其下方的软组织,激活了一种叫做TGF-β的生长因子,从而刺激干细胞再生出牙本质;日本东京大学医学研究所的研究人员从狗的腭骨中取出牙胚,从牙胚中提取出干细胞并将其与胶原纤维一起培养之后,再植入狗的腭骨,经过20周以后,狗长出了完整牙齿;中国的科研人员将人尿液中的细胞诱导成多能干细胞,并将这些干细胞进一步诱导成上皮膜样结构,进而与小鼠的牙胚间充质细胞混合后,“种”在小鼠肾脏中。大约3周后,“种”出了一批大小为1立方毫米左右的“再生牙齿”
在一项新研究中,来自芬兰赫尔辛基市生物技术研究所的Irma Thesleff教授领导的一个研究小组发现牙齿干细胞中的一个标记物。他们证实Sox2在小鼠门牙(front tooth)干细胞中特异性地表达。小鼠门牙在一生当中都不断地生长,而且这种生长是由位于牙齿根部的干细胞促进的。这些细胞提供一种极好的模型来研究牙齿干细胞。
研究人员开发出一种方法来记录牙齿干细胞的分裂、运动和分化。通过追踪基因标记的细胞,他们也证实Sox2阳性干细胞产生形成牙釉质的成釉细胞(ameloblast)和牙齿中其他细胞系。
尽管人牙齿不能持续性地生长,但是控制和调节牙齿生长的机制与小鼠牙齿相类似。因此,发现牙齿干细胞标记物Sox2是朝开发出完整的生物工程牙齿而迈出的重要一步。在未来,人们可能利用牙齿干细胞培育出新的牙齿来替换缺损的牙齿。
研究者们目前已经找到通过使用成人牙龈细胞和老鼠臼齿附近细胞制作牙齿的方法。而此前,科学家们一直认为,只有通过胚胎细胞才能达到同样的目的。使用人体胚胎细胞无疑将戳中很多政策和道德问题的某点,因而,他们另辟蹊径了。科学家从成人的牙龈上取下了一些干细胞,并将其置于实验室中培养,之后将其与从小鼠胚胎中提取出的间充质牙齿细胞(mescenchymal tooth cells)混合。一周后,他们将这团混合物移植到了活鼠肾旁的保护组织内,在那里,一些细胞最终长成了人齿和老鼠牙齿的混合产物,珐琅、象牙质一个也不缺。
这种发现也许总有一天会让医生不敢在医院中运用过多科学技术,不过这也是一个开始。实验的下一步是搞明白如何仅仅使用人体细胞造出牙齿,而不借助于小鼠细胞的帮助。不过,能长出“牙齿”就已经是一个进步了。
2004年11月,英国伦敦一所大学的头盖骨研究专家保尔-夏普教授成功地利用未成年实验鼠的干细胞培育出鼠牙,这一成果如成功运用在人身上,将解决目前牙病患者因佩带假牙而产生各种不适应症的问题。
夏普教授在《新科学家》杂志上发表文章称,他的下一步工作是将培育出的牙齿植入实验鼠的下颚。他相信,这些“干细胞牙”内部的神经和血液输送系统会与实验鼠的牙床“完美”结合。
据夏普教授介绍,牙齿由不同类型的组织构成,包括坚硬的牙质、珐琅质和牙髓等。其中,牙髓中含有可以用以生成牙齿主体部分的“成牙质干细胞”,但利用这种干细胞“制造”新牙绝非易事,因为在牙髓中上百万的细胞里,只有80个左右是干细胞。
尽管“干细胞牙”的研究工作尚处早期阶段,专家估计这一技术为人类服务至少还需要10年时间,但夏普教授对此充满信心,“我的目标就是按需要,为牙病患者制造他们自己的牙。”
澳大利亚阿德莱德大学的科学家近日表示,他们在人类的牙齿中找到了干细胞。这些干细胞可以用来帮助牙齿自行修复破损部分,也可以在将来让牙齿掉光的老人长出新牙来。
阿德莱德大学的生物学家格罗恩索斯和他的研究小组是在儿童换下来的牙齿中找到干细胞的。
格罗恩索斯教授介绍,人的牙齿由不同的组织构成,包括釉质、牙质和牙髓等。其中牙髓中含有生成牙齿主体部分的“成牙质干细胞”,但利用这种干细胞“制造”新牙并非易事,因为在牙髓中的上百万个细胞里,只有80个左右是干细胞。他们计划将牙齿干细胞提取出来,储存在液态氮里,利用这种细胞修复破损或患病的牙齿。
在最近举行的一次医学研讨会上,格罗恩索斯与各国科学家就牙齿干细胞的临床医学应用进行了交流。他说:牙齿是一种非常复杂的器官,它与多种组织相连,试验这种干细胞的修复功能要花很多精力。
据日本《读卖新闻》14日报道,东京大学医学研究所上田实教授等人从狗的腭骨中取出牙胚,然后又从牙胚中成功提取了干细胞。他们将干细胞和胶原纤维一起培养之后,再植入狗的腭骨。经过20周以后,狗长出有釉质、象牙质、齿髓等组织的完整牙齿,经过检查确认,牙齿内部还存在血管和神经。
东京大学教授、日本炎症—再生医学学会会长中畑龙俊说,牙齿内存在干细胞,这一点已经广为人知。提取这类干细胞,经过培养之后再植入动物腭骨生成完整牙齿,这一技术若用于再生医疗,将给人类带来福音。
大多数牙滤泡(DF)的出现都与牙齿未萌出有关,它是在牙齿发育早期包裹牙胚的外胚层细胞凝聚。在这篇研究中,研究者的目的是为了从人的DF中分离出上皮干细胞样细胞,并探讨其向唾液腺(SG)细胞分化的潜能。
研究者发现,在人DF组织的上皮成分中存在干细胞相关基因的表达,并且这些上皮组细胞能够从组织中分离出来,并且在体外培养和扩增。结果显示,来源于人DF的上皮细胞呈球面形态,具有克隆能力,同时也表达一组上皮干细胞相关基因。因此,可以认为来源于人DF的上皮细胞(hDF-EpiSCs)具有一定的干细胞干性。在体外三维立体培养诱导条件下,hDF-EpiSCs能够分化为SG腺泡细胞和SG导管细胞。不仅如此,将hDF-EpiSCs负载到天然去细胞的大鼠腮腺支架材料中,并移植至裸鼠肾被膜,可以观察到移植后的hDF-EpiSCs可以分化为唾液腺样细胞。
结论:这些结果表明,hDF-EpiSCs可能有希望成为上皮干细胞的来源,以此促进以干细胞为基础疗法的发展或者成为生物工程SG组织来修复/再生SG的功能障碍。